Interpreting the BOLD signal.
نویسندگان
چکیده
The development of functional magnetic resonance imaging (fMRI) has brought together a broad community of scientists interested in measuring the neural basis of the human mind. Because fMRI signals are an indirect measure of neural activity, interpreting these signals to make deductions about the nervous system requires some understanding of the signaling mechanisms. We describe our current understanding of the causal relationships between neural activity and the blood-oxygen-level-dependent (BOLD) signal, and we review how these analyses have challenged some basic assumptions that have guided neuroscience. We conclude with a discussion of how to use the BOLD signal to make inferences about the neural signal.
منابع مشابه
Effect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI
Introduction Echo-planar imaging (EPI) is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that ...
متن کاملModeling the Effect of Changes in Arterial Blood Volume on the BOLD Signal
Purpose: The BOLD effect is modeled as primarily due to a mismatch of cerebral blood flow (CBF) and cerebral metabolic rate of O2 (CMRO2), but it is still not clear how we should include the effects of changes in cerebral blood volume (CBV) in the model. Having an accurate model is important because it serves as the framework for interpreting combined CBF and BOLD measurements in the calibrated...
متن کاملRepeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging
Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...
متن کاملBiophysical and physiological origins of blood oxygenation level-dependent fMRI signals.
After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the ...
متن کاملMetabolic and vascular origins of the BOLD effect: Implications for imaging pathology and resting-state brain function.
The blood oxygenation level-dependent (BOLD) phenomenon has profoundly revolutionized neuroscience, with applications ranging from normal brain development and aging, to brain disorders and diseases. While the BOLD effect represents an invaluable tool to map brain function, it does not measure neural activity directly; rather, it reflects changes in blood oxygenation resulting from the relative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annual review of physiology
دوره 66 شماره
صفحات -
تاریخ انتشار 2004